Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea.

نویسندگان

  • N Raffaelli
  • F M Pisani
  • T Lorenzi
  • M Emanuelli
  • A Amici
  • S Ruggieri
  • G Magni
چکیده

The enzyme nicotinamide mononucleotide (NMN) adenylyltransferase (EC 2.7.7.1) catalyzes the synthesis of NAD+ and nicotinic acid adenine dinucleotide. It has been purified to homogeneity from cellular extracts of the thermophilic archaeon Sulfolobus solfataricus. Through a database search, a highly significant match was found between its N-terminal sequence and a hypothetical protein coded by the thermophilic archaeon Methanococcus jannaschii MJ0541 open reading frame (GenBank accession no. U67503). The MJ0541 gene was isolated, cloned into a T7-based vector, and expressed in Escherichia coli cells, yielding a high level of thermophilic NMN adenylyltransferase activity. The expressed protein was purified to homogeneity by a single-step chromatographic procedure. Both the subunit molecular mass and the N-terminal sequence of the pure recombinant protein were as expected from the deduced amino acid sequence of the MJ0541 open reading frame-encoded protein. Molecular and kinetic properties of the enzymes from both archaea are reported and compared with those already known for the mesophilic eukaryotic NMN adenylyltransferase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Escherichia coli NadR regulator is endowed with nicotinamide mononucleotide adenylyltransferase activity.

The first identification and characterization of a catalytic activity associated with NadR protein is reported. A computer-aided search for sequence similarity revealed the presence in NadR of a 29-residue region highly conserved among known nicotinamide mononucleotide adenylyltransferases. The Escherichia coli nadR gene was cloned into a T7-based vector and overexpressed. In addition to functi...

متن کامل

Axonal degeneration is blocked by nicotinamide mononucleotide adenylyltransferase (Nmnat) protein transduction into transected axons.

Axonal degeneration is an early and important component of many neurological disorders. Overexpression of nicotinamide mononucleotide adenylyltransferase (Nmnat), a component of the slow Wallerian degeneration (Wld(s)) protein, protects axons from a variety of insults. We found that transduction of Nmnat protein into severed axons via virus-like particles prevented axonal degeneration. The post...

متن کامل

Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene.

The gene (ybeN) coding for nicotinate mononucleotide adenylyltransferase, an NAD(P) biosynthetic enzyme, has been identified and overexpressed in Escherichia coli. This enzyme catalyzes the reversible adenylation of nicotinate mononucleotide and shows product inhibition. The rate of adenylation of nicotinate mononucleotide is at least 20 times faster than the rate of adenylation of nicotinamide...

متن کامل

Nicotinamide mononucleotide adenylyltransferase maintains active zone structure by stabilizing Bruchpilot.

Active zones are specialized presynaptic structures critical for neurotransmission. We show that a neuronal maintenance factor, nicotinamide mononucleotide adenylyltransferase (NMNAT), is required for maintaining active zone structural integrity in Drosophila by interacting with the active zone protein, Bruchpilot (BRP), and shielding it from activity-induced ubiquitin-proteasome-mediated degra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 24  شماره 

صفحات  -

تاریخ انتشار 1997